Antimicrobial Susceptibility Testing (AST): Current Issues & Implications for Public Health

Janet Fick Hindler, MCLS MT(ASCP)
jhindler@ucla.edu
UCLA Medical Center
Los Angeles, CA

At the conclusion of this talk, you will be able to.....

- Discuss current issues in antimicrobial susceptibility testing and antimicrobial resistance.
- List current sources for information on antimicrobial susceptibility testing.
- Describe the effects of these issues on public health.

Current Issues in AST

- Identify methods to detect and report "emerging resistance"
 - Reliable
 - Practical for clinical laboratories
- Communicate AST and reporting issues to clinical labs
- Assess performance of clinical labs in detecting "emerging resistance"

Communicate AST & Reporting Issues to Clinical Labs

- Primary resources for continuing education
 - Workshops / seminars
 - Internet
 - Publications
- CDC / NLTN efforts
 - MASTER website (www.phppo.cdc.gov/dls/master/default.asp)
 - AST CD ROM (available late 2002)
 - NLTN workshops, teleconferences, other

Detect / Report Emerging Resistance

Clinical Lab

Public Health Lab (Define role)

Public Health Lab as A Resource for Clinical Labs in AST & Reporting

- Performs AST (confirms unusual results)
- Answers questions
 - Identifies other resources, when needed
- Provides news "bulletins"
- Provides CE

Much Variability Among PH Labs!

Clinical Lab Need

Knowledge of "resources" for AST & reporting in their communityparticularly when a "real problem" arises.

Assess Performance of Clinical Labs in Detecting Emerging Resistance

- Inspections
- Proficiency surveys
- Post CE monitoring
- (Competency assessment)

Contemporary Resistance Concerns

- Staphylococcus aureus
 - -MRSA new tests
 - -VISA
 - -VRSA
- Streptococcus pneumoniae
 - -Reporting using new breakpoints

Contemporary Resistance Concerns (con't)

- Streptococcus spp.
 - Beta Streptococcus Group B (in pregnancy) and clindamycin / erythromycin
- Enterobacteriaceae
 - Extended-spectrum beta-lactamases (ESBLs)

NCCLS Standards - 2002

- M2-A7 Disk Diffusion
- ♦ M7-A5 MIC
- M100-S12 Tables*

*Updated annually www.nccls.org (610) 688-0100

Staphylococcus spp.

Organism	1st Choice Drugs	Alternative Drugs
MSS	P'ase stable penicillin (e.g., oxacillin)	a cephalosporin, vancomycin, ß-lac/ß-lac inhibitor combo, imipenem or meropenem, clindamycin, a fluoroquinolone
MRS	vancomycin +/- gentamicin +/- rifampin	linezolid, quin-dalfo, a fluoroquinolone, a tetracycline, trim-sulfa

MRSA (ORSA)

- Genetic determinant mecA
- ◆ MecA codes for PBP2a

MRSA Test Methods

- NCCLS disk diffusion or MIC
- Commercial method
- Agar screen
- mecA assay
- ♦ PBP2a assay

MRSA

"Isolates of staphylococci that are shown to carry the *mecA* gene, or that produce PBP2a, the gene product, should be reported as oxacillin resistant."

PBP2a

Can mecA or PBP2a Assays be Used Alone?

- MRSA?
- MSSA?
- Are these tests consistently reliable "on the bench"?
- Are results for other drugs routinely needed?

Staphylococcus - ß-Lactams

Ox	Comments
S	S to penicillins, cephems,
	carbapenems
S	R to ß-lactamase labile pens; S to ß-lactamase stable pens;
	S to ß-lac / ß-lac inhibitor
	combos, cephems, carbapenems
R	R to all ß-lactams
	S

Staphylococcus aureus

clindamycin S

erythromycin S

oxacillin S

penicillin R

vancomycin S

"Cefazolin and other beta-lactams (except amoxicillin, ampicillin, and penicillins) are active against oxacillin-S and penicillin-R staphylococci."

VISA* (GISA**)

- Mostly MRSA
- ♦ Vanco MIC=8 µg/ml
- Japan, USA (MI, NY, NJ, CA), Europe
- Patients previously Rx with vanco
 - * vancomycin-intermediate *S. aureus***glycopeptide-intermediate *S. aureus*(vancomycin is a glycopeptide)

Detection of VISA

MicroScan ON

Etest

Sensititre

Vitek

◆ BHI-Van (6 µg/ml)

MicroScan rapid

Disk diffusion

MIC (µg/ml)

8

6-8

4,8

4

growth

≤**2**, ≥ **16**

inadequate

Tenover, et al. 1998. JCM. 36:1020

Case Study VISA - Pt. JB (UCLA)

- ♦27 y.o. referral patient
- liver transplant candidate
- Bile drainage (liver abscesses)
- 2 strains VISA

Case Study - VISA Pt. JB

Strain	mecA	MIC ()	ug/ml) Van
1	_	0.5	8
2	+	>16	8

Confirmation of VISA

- If VISA suspected:
 - 1. Repeat ID and susceptibility tests
 - 2. Contact your institution's infection control department
 - 3. Contact CDC at SEARCH@cdc.gov
 - 4. Contact your local health department
 - 5. Save isolate

VRSA – 1st Case

- Michigan
- 40 y.o., diabetic on dialysis
- Previous catheter site with MRSA
- Previous vancomycin Rx (6.5 wks)

VRSA - 1st Case (con't)

- ◆VRSA with mecA and vanA genes
- Patient also had VRE (vanA)
- ◆Vancomycin MIC =1024 µg/ml
- S to chloramphenicol, linezolid, minocycline, quin-dalfo, tetracycline, TMP-SMZ

MMWR 51:565-567, July 5, 2002

VRSA - 2nd Case

- Pennsylvania
- Chronic foot ulcer
- VRSA with mecA and vanA genes
- Vancomycin MIC = 32 μg/ml
- ◆ DD zone = 12 mm
- Van (6 μg/ml) BHI screen = growth
- S to chloramphenicol, linezolid, minocycline, quin-dalfo, rifampin, TMP-SMZ

MMWR 51:902. Oct. 11, 2002

If pen \leq 0.06 µg/ml (S)...

1st Choice Drugs

Alternative Drugs

penicillin G or V; amoxicillin a cephalosporin; erythromycin; clarithromycin; azithromycin; levofloxacin, gatifloxacin, or moxifloxacin; meropenem; imipenem; trimsulfa; clindamycin; a tetracycline

If pen 0.12 - 1 µg/ml (I)...

1st Choice Drugs

penicillin G IV or ceftriaxone or cefotaxime

Alternative Drugs

levofloxacin, gatifloxacin, or moxifloxacin; vancomycin clindamycin

If pen ≥ 2 μg/ml (R)...

1st Choice Drugs

Alternative Drugs

Meningitis:

vancomycin +

cefotaxime or ceftriaxone

+/- rifampin

Other:

as above or levofloxacin, gatifloxacin, or moxifloxacin

meropenem; imipenem

quinupristin/dalfopristin linezolid

Streptococcus pneumoniae Breakpoints

Ceftriaxone and Cefotaxime

- Originally based on treatment of meningitis
- NCCLS saw need for breakpoints for treatment of respiratory infections
- New non-meningitis breakpoints

Penicillin

- Originally based on treatment of meningitis
- No change in breakpoints

MIC (μg/ml) S Int R

Ceftriaxone or cefotaxime (meningitis)

≤ 0.5

1

≥ 2

Ceftriaxone or cefotaxime (non-meningitis)

≤ 1

2

≥ 4

Penicillin

≤ 0.06

0.12 - 1

≥ 2

Streptococcus pneumoniae Penicillin

"High doses of IV penicillin (e.g. at least 2 million units every 4 hours in adults with normal renal function) or similarly ampicillin (e.g. 2 g at every 6 hours) are effective in treating pneumococcal pneumonia due to strains in the intermediate category."

S. pneumoniae (CSF)

MIC (µg/ml)

ceftriaxone

(meningitis) ≤0.25 S

penicillin ≤0.03 S

vancomycin 0.5 S

Patients with meningitis require therapy with maximum doses of ceftriaxone.

S. pneumoniae (blood)

MIC (µg/ml)
1 I
1 S
R
0.5 S
1.0 I
0.5 S

Pts. with meningitis require therapy with max doses of ceftriax; High dose IV pens (e.g. at least 2 mil U every 4 h in adults with normal renal function) or amp (e.g. 2 g at every 6 h) are effective in treating pneumococcal pneumonia due to strains in the penicillin "int" category.

Beta Streptococcus spp.

	1st Choice Drugs	Alternative Drugs
Beta Group A, C, G	penicillin G or V	clindamycin; erythromycin; a cephalosporin; vancomycin; clarithromycin; azithromycin
Group B	penicillin G or ampicillin	a cephalosporin; vancomycin; erythromycin

The Medical Letter; 2001; 43:69.

Throat Culture

Many Group A Streptococcus

"Group A Streptococcus remains universally susceptible to penicillin"

Beta Streptococcus spp. Erythromycin/Clindamycin

- Erythromycin and/or clindamycin are alternatives in penicillin-allergic patients
- Group A 5-10% erythromycin-R
- Group B up to 25% erythromycin-R and 15% clindamycin-R (prophylaxis in pregnant women issue)

Extended-Spectrum ß-lactamases (ESBLs)

- Result from mutation of common ßlactamase genes (e.g., bla_{TEM-1}, bla_{SHV-1})
- Inactivate extended-spectrum ß-lactam agents
- Genes located on plasmids (often with other R genes)
- Approx. 100 TEM and 30 SHV types

Significance of ESBLs

- Cause nosocomial infections
- Serious, infections. Treatment failures (esp. bacteremia) when patient treated with 3rd gen. cephalosporins.

ESBLs — Testing

- Organisms:
 E. coli, Klebsiella spp.
- Screen test:
 Decreased susceptibility to extended-spectrum
 ß-lactams
- Phenotypic confirmatory test:
 ß-lactam activity restored by ß-lactamase inhibitor (e.g. clavulanic acid)
- Other clues:
 "S" to cephamycins; multi-R

Klebsiella pneumoniae ?ESBL

PRELIM:		MIC (µg/ml)
C	efoxitin	1 S
Ci	profloxacin	0.5 S
in	nipenem	≤ 0.25 S
pi	p-tazo	8 S
aı	m, cfaz, gm, T-S	R
	***hold cofonime	ofotovimo if "C"

***hold cefepime, cefotaxime, if "S"

This *K. pneumoniae* is suspicious for extended-spectrum betalactamase (ESBL) production; confirmatory tests pending.

ESBLPhenotypic Confirmatory Test

Test:

- cefotaxime
- cefotaxime/clavulanic acid
- ceftazidime
- ceftazidime/clavulanic acid

Results:

clavulanic acid restores activity of cefotaxime or ceftazidime or both

ESBL Confirmatory Test

ESBL Reporting

- Confirmed ESBLs report "R" for:
 - -cephalosporins (not cephamycins)
 - -penicillins (not ß-lac inhibitor combos)
 - -aztreonam

Klebsiella pneumoniae ESBL

FINAL:		MIC (µg/ml)
	cefepime	R
	cefoxitin	1 S
	cefotaxime	♥ R
	ciprofloxacin	0.5 S
	imipenem	0.25 S
	pip-tazo	8 S
	am. cefaz. gent. T-S	R

Confirmatory tests for this *K. pneumoniae* indicate unusual resistance [extended-spectrum beta-lactamase (ESBL) production]; ID consult suggested.

Issues - ESBLs

- Reporting ESBLs from urine isolates (e.g. acute cystitis)
- Changing results for other β-lactams (e.g. piptazobactam)
- Detection of.....
 - all types of ESBLs (≅100 TEM and 30 SHV)
 - ESBLs present with other "R" mechanisms
 - ESBLs beyond E. coli and Klebsiella spp.
 - other β -lactamases (e.g. plasmid-mediated ampC)

NCCLS M39-A Guideline

"Analysis and Presentation of Cumulative Antimicrobial Susceptibility Test Data"

Focus - clinical laboratories
Guide MDs on empiric therapy

% Susceptible 2001 – Exmp.

	n	Am	Cf	Ctx	Cip	Gm	Pp	T-S
E. coli	729	66	81	98	97	97	66	76
E. cloacae	144	-	-	66	95	88	65	88
P. aerug	221	-	-	10	79	81	76	-

CAP Checklist MIC.21950 (2001)

- Does the procedure manual address unusual or inconsistent antimicrobial susceptibility testing results?
 - Testing QC strains doesn't guarantee accurate patient results
 - Unusual or inconsistent results should be investigated

Verification Rules - Exmps. Biologically implausible or infrequent

- Repeat test
 - -amik-R + gent-R + tob-R Enterobacteriaceae
 - -amp-R E. faecalis
 - imipenem-R Enterobacteriaceae
- Reexamine or repeat test
 - -amp-S Klebsiella spp.

Enterobacter aerogenes

ampicillin R

cefazolin R

ceftizoxime S

gentamicin S

imipenem R*

trimeth-sulfa S

* "R" likely due to drug deterioration

Conclusions

Clinical laboratory detection of emerging resistance

- Labs must have access to current testing / reporting guidelines
- Lab personnel must be competent in testing
- Resources for "problems" in emerging resistance must be available to labs

Staphylococcus aureus

- mecA or PBP2a tests can be used to identify MRSA
- VISA are uncommon and may be difficult to detect
- VRSA are rare and can be detected readily; however the resistance may be unstable

Conclusions (con't)

Streptococcus pneumoniae

- The new NCCLS breakpoints for ceftriaxone and cefotaxime should be reported
- MICs should be performed on CSF isolates ASAP
- A comment should be added to explain the meaning of a penicillin "Int" result on non-CSF isolates

Streptococcus spp.

 Group B streptococci from penicillin-allergic pregnant women should be tested with clindamycin and/or erythromycin

Conclusions (con't)

Enterobacteriaceae

- E. coli and Klebsiella spp. should be tested for ESBL production
- Urine isolates associated with acute uncomplicated cystitis may not require ESBL testing
- There are currently no standard NCCLS methods for detecting ESBLs in isolates other than *E. coli* and *Klebsiella* spp.

Local resistance patterns

 When possible, NCCLS M39-A should be followed for preparing a cumulative antibiogram report

Conclusions (con't)

Verifying results on patient isolates

 Each laboratory should develop a written protocol for verification of unusual or atypical patient results prior to reporting them

Resources

 a listing of antimicrobial susceptibility testing resources can be found on MASTER website

Additional References

Livermore, D. M., T. G. Winstanley, and K. P. Shannon. 2001. Interpretative reading: recognizing the unusual and inferring resistance mechanisms from resistance phenotypes. J. Antimicrob. Chemother. 48:87-102.

Websites:

http://www.cdc.gov/drugresistance/factsheets/index.htm CDC antimicrobial susceptibility testing fact sheets

http://www.cdc.gov/drugresistance/

CDC drug resistance

http://www.cdc.gov/drugresistance/community/

CDC antibiotic resistance

http://www.asmusa.org/division/c/index.htm

ASM Division C (clinical microbiology) website includes "Askit" feature

Thankyou

www.phppo.cdc.gov/dls/master/default.asp